Hydrogen Infrastructure

Opportunities for Accelerating Market Introduction of Hydrogen Fuels

Briefing to Steve Chalk

M. Mintz, J. Muzzarelli, S. Folga, J. Molburg, J. Gillette May 20, 2002

- Hydrogen delivery volume
- HYDROGen INfrastructure Database (HYDROGIN)
- Initial database capabilities
- Demo: Overlaying HYDROGIN onto other infrastructure databases
- Next steps

In 1999 the US Accounted for 3.2 tcf (1 quad) or 20% of Global H₂ Consumption

Captive Users	United States	Total World ¹
- NH ₃ Producers	1.185	9.662
- Oil Refiners ²	1.164	3.721
- Methanol Producers	0.303	1.428
- Other	0.121	0.482
Merchant Users	0.379	0.570
Total	3.153	15.864

¹ Including US.

Source: SRI Chemical Economics Handbook 2001.

² Excluding byproduct hydrogen.

Petroleum Refiners and Merchant Producers Play Bigger Roles in US Than Overseas

United States

- □ CH4OH Producers
- **■** Merchant Users

- Refiners
- Other

Rest of World

- Hydrogen delivery volume
- HYDROGen INfrastructure Database (HYDROGIN)
- Initial database capabilities
- Demo: Overlaying HYDROGIN onto other infrastructure databases
- Next steps

Data Sources Used to Develop the Hydrogen Infrastructure Database (HYDROGIN):

- General locations and capacities of GH₂, LH₂, NH₃ and methanol plants
 - Chemical Economics Handbook (SRI 2001)
 - Chemical Profiles (ChemExpo 2001)
 - Chemical Profiles (The Innovation Group 2001)
- Same for GH₂, LH₂, G-LH₂ and methanol terminals
 - Web pages of individual companies
- General locations & H₂ production capacities of refineries
 - Data Book (PennWell 2000)
 - "Refinery Capacity Data" (DOE/EIA 2001)

Data Sources for HYDROGIN (cont'd)

- Geolocations of H₂, methanol and NH₃ plants, terminals and delivery/receipt points
 - Envirofacts Data Warehouse and Applications (EPA)
 - NPRI Data Search (NPRI, Canada)
 - Querying Canadian Geographical Names (NRCan)
 - Yellow Pages (US & Canada)
- Geolocations of H₂ and NH₃ pipelines
 - H₂ from linking production and delivery/receipt points
 - NH₃ from National Pipeline Mapping System (USDOT 2001)

Contents of HYDROGIN

	Production Plants (Number)	Storage Terminals (number)	Pipelines (miles)
GH ₂	81	14	560
LH ₂	10	3	na
GH ₂ - LH ₂	na	3	na
Refineries	61	na	na
NH ₃	54	na	3105
Methanol	15	4	na
TOTAL	221	24	

Data Coverage of HYDROGIN

	Plants	Terminals	Pipelines/ tank cars	Tanks/ Trailers
Nameplate capacity	NNN	\checkmark	√	√
Capacity utilization/ onstream factor	√	V	√	V
Onstream date	111			
Process	111			
Feedstock	111			
Delivery locations	11		V V	

 $[\]sqrt{\sqrt{1}}$ = Complete data.

 $[\]sqrt{V}$ = Partial data.

 $[\]sqrt{}$ = No data.

- Hydrogen delivery volume
- HYDROGen INfrastructure Database (HYDROGIN)
- Initial database capabilities
- Demo: Overlaying HYDROGIN onto other infrastructure databases
- Next steps

Hydrogen Production Is Concentrated in Refining Centers and the Farm Belt

H₂ Pipeline Segments Connect Plants with High-Volume Customers Many of Which Are Concentrated Along the TX/LA Coast

Terminal Storage Can Be Co-Located with Production or Be at Remote Sites

Ammonia Pipelines Are More Extensive Than Hydrogen Pipelines

But Pale in Comparison to Petroleum and Natural Gas Pipeline Systems

- What if a coal-to-hydrogen pathway were pursued?
- What if thermochemical water splitting were pursued using advanced high-temperature nuclear reactors?
- What if natural gas were reserved for transportation and coal or nuclear were shifted to power generation?

For all of these options:

- Where would infrastructure develop and how might it evolve?
- What would it cost by itself and compared with other options?

For a Coal-to-H₂ Pathway, the Mid-Atlantic and Ohio Valley Could Be Key Producing Regions

Or, Use of Coal Bed Methane Could Move Production to a Subset of These States

For a Nuclear-to-Hydrogen Pathway, Producing Regions Could Lie Along Coastlines or Rivers

In the 2050 Study, Four H₂ Pathways Were Modeled, But Production/Distribution Tradeoffs Were Data-Limited

In Addition to Infrastructure, HYDROGIN Could Show Production, Capacity Utilization and Demand

- Similar maps of capacity, capacity utilization/unused capacity and abandoned capacity
- Locations of hydrogen-fueled vehicles (or other hydrogen end-users) and required deliverability

- Hydrogen delivery volume
- HYDROGen INfrastructure Database (HYDROGIN)
- Initial database capabilities
- Demo: Overlaying HYDROGIN onto other infrastructure databases
- Next steps

- Hydrogen delivery volume
- HYDROGen INfrastructure Database (HYDROGIN)
- Initial database capabilities
- Demo: Overlaying hydrogen onto other infrastructure databases
- Next steps

Next Steps

Geocode infrastructure capacities

- 100 tpd vs. 1 tpd

Estimate and geocode capacity utilization

- survey producers/operators
- Review/cross-check secondary sources

Estimate marginal cost of capacity additions

- capital cost of modular additions
- supply curves

Suggestions for Follow-On Work and Possible Collaborations

- Add cost modeling results to existing infrastructure cost model
- Integrate cost model with GREET, define additional pathways, and add them to HYDROGIN database
- Share HYDROGIN database and regional results with NREL for use in workshops and in developing regional demos
- Share HYDROGIN database and cost analyses with Ogden et al. in studies of infrastructure cost minimization
- Add interactive capability to permit users to investigate market potential of alternative pathways